Ultrasonic Phased Arrays and Interactive Reflectivity Tomography

Purdue University

Hani Almansouri Benjamin Foster Charles Bouman

Oak Ridge National Laboratory

Hector J. Santos-Villalobos Christi Johnson Case Collins Dwight Clayton Roger Kisner Yarom Polsky

Motivation

Nuclear Power Plants

- Containment Buildings
- Reactor buildings
- Fuel pools
- Cooling towers

Oil and Gas

Geothermal

CCS

Hani Almansouri - halmanso@purdue.edu

Motivation: Needs

Well Casing Cemen Fill Formation Rock Cement Well Plug **Steel Rebar** Hydraulic fracturing in shale Massive hydraulic fracturing demonstrated by DOE in 1977 [Gasda 2004]

٠

- Mixture of cement, ٠ aggregate, rocks, and water
- High density reinforcement ٠

4

Liner Plate

Drill Bit technology benefits

Developed for geothermal applications, hugely impactful in

oil and gas development

attributable to DOE

Anchor

Motivation: Synthetic Aperture Focusing Technique (SAFT)

Homogenous medium

Specimen: Thick, Depth: 1066.8mm (42in), AbsofHilbert -- Node 16 (4,1), 31.25 ~ 62.5 kHz Panoramic SAFT-B, Spec=Rough, Orient=hor, Set=17, Thresh=20, Strategy=sum,

Non-homogenous Thick Concrete Specimen

Plexiglas

Motivation: Model-Based Iterative Reconstruction (MBIR)

State-of-the-art 3D Recon

GE MBIR

MBIR looks for the best solution that fits the data

"Rather than making the "purest" measurement, make the most informative measurement." --Charlie Bouman, Professor Purdue University

Goal

Implement MBIR to ultrasonic system for thick non-homogeneous concrete structure.

Background On MBIR: MAP Estimation

Background On MBIR (cont.)

- Propagation model
 - $G(r_i, p, f) = \tau_1 \tau_2 \exp \{-(\alpha(f) + j\beta(f)) ||p r_i||\}$
 - $\alpha(f) \approx \alpha_0 |f|$ is the attenuation coefficient

•
$$\beta(f) \approx \frac{2\pi f}{r}$$
 is the phase delay

• Measurements

$$\begin{aligned} Y_{i,j}(p,f) &= S(f)G(r_i, p, f)x(p)G(p, r_j, f) \\ &= \tau_1^2 \tau_2^2 x(p)S(f) \exp\left\{-\left(\alpha_0 c|f| + j2\pi f\right)T_{i,j}(p)\right\} \end{aligned}$$

$$y_{i,j}(p,t) = h(T_{i,j}(p), t - T_{i,j}(p)) x(p)$$
Hani Almansouri - halmanso@purdue.edu

Ultrasonic MBIR: Forward Model (cont.)

Ultrasonic MBIR: Prior Model

 $-\log p_x(x) = \sum_{\{s,r\}\in \mathcal{P}} b_{s,r} \rho(x_s - x_r)$ X ~ pair-wise Gibbs Distribution

• \mathcal{P} is the set of all unordered neighboring pixel pairs $\{s, r\}$ such that $r \in \partial s$.

• Q-Generalized Gaussian Markov Random Field (QGGMRF)

• It has continuous first and second derivative near $\Delta = 0$.

$$\rho(\Delta) = \frac{|\Delta|^p}{p} \left(\frac{\left|\frac{\Delta}{T}\right|^{q-p}}{1 + \left|\frac{\Delta}{T}\right|^{q-p}} \right)$$

- $1 \leq p < q$ for guaranteed function convexity
- Usually, *p* = 2 and q is close to 1.
 - $|\Delta| < T$ preserves details in low contrast regions
 - $|\Delta| > T$ preserves edges

Ultrasonic MBIR: Optimization

$$\hat{x}_{MAP} = \arg\min_{x\in\Omega} \left\{ \frac{1}{2} ||y - Ax||_{\Lambda}^2 + \sum_{\{s,r\}\in\mathcal{P}} b_{s,r}\rho(x_s - x_r) \right\}$$

- Iterative Coordinate Descent (ICD) algorithm
 - Fast and stable algorithm
 - Better for defining high frequency components (i.e., edges)
 - Usually initialize object estimate with lower resolution reconstruction
 - E.g., back-propagation of measured signals $A^{-1}y$

ICD Algorithm using Majorization of Prior:
Initialize
$$e \leftarrow y - Ax$$

For K iterations {
For each pixel $s \in S$ {
 $\tilde{b}_{s,r} \leftarrow \frac{b_{s,r}\rho'(x_s - x_r)}{2(x_s - x_r)}$
 $\theta_1 \leftarrow -e^t \Lambda A_{*,s} + \sum_{r \in \partial s} 2\tilde{b}_{s,r} (x_s - x_r)$
 $\theta_2 \leftarrow A_{*,s}^t \Lambda A_{*,s} + \sum_{r \in \partial s} 2\tilde{b}_{s,r}$
 $\alpha^* \leftarrow \operatorname{clip} \left\{ \frac{-\theta_1}{\theta_2}, [-x_s, \infty) \right\}$
 $x_s \leftarrow x_s + \alpha^*$
 $e \leftarrow e - A_{*,s}\alpha^*$
}

Old solution:

New solution:

Replace Forward Model and MAP Estimate

$$y_{i,j}(t) = -\int_{\mathbb{R}^3} A_{i,j}(T_{i,j}(p), t) x(p) dp \qquad T_{i,j}(p) = \frac{||p - r_i|| + ||p - r_j||}{c}$$
$$(\hat{X})_{MAP} = \underset{(X)}{\operatorname{argmin}} \left\{ \frac{1}{2} ||y - AX||_{\Lambda} + u(X) \right\}$$

With

$$\begin{aligned} y_{i,j}(t) &= -\int_{\mathbb{R}^3} A_{i,j}(T_{i,j}(p), t) x(p) dp + A_{i,j}(T_{i,j}, t) z_{i,j} & T_{i,j} = \frac{||r_j - r_i||}{c} \\ (\hat{X}, \hat{z})_{MAP} &= \operatorname*{argmin}_{(X,z)} \left\{ \frac{1}{2} ||y - AX - dz||_{\Lambda} + u(X) \right\} \underbrace{\text{Direct arrival}}_{(d^t d)^{-1}} = \begin{bmatrix} \frac{1}{d_1^t d_1} & 0 & \dots & 0 \\ 0 & \frac{1}{d_2^t d_2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \frac{1}{d_k^t d_k} \end{bmatrix} \end{aligned}$$

New solution:

ICD Algorithm using Majorization of Prior:	
Initialize $e \leftarrow y - Ax$	
For K iterations {	
For each pixel $s \in S$ {	
$\tilde{b}_{s,r} \leftarrow \frac{b_{s,r}\rho'(x_s - x_r)}{2(x_s - x_r)}$	
$\theta_1 \leftarrow -e^t \Lambda A_{*,s} + \sum_{r \in \partial s} 2\tilde{b}_{s,r} \left(x_s - x_r \right)$	
$\theta_2 \leftarrow A^t_{*,s} \Lambda A_{*,s} + \sum_{r \in \partial s} 2\tilde{b}_{s,r}$	
$\alpha^* \leftarrow \operatorname{clip}\left\{\frac{-\theta_1}{\theta_2}, [-x_s, \infty)\right\}$	
$x_s \leftarrow x_s + \alpha^*$	
$e \leftarrow e - A_{*,s} \alpha^*$	
}	

ICD Algorithm using Majorization of Prior:
Initialize $e \leftarrow y - Ax$
For K iterations { $(Jt_{-}) = 1, Jt_{-}$
$z = (a^{\circ}a)^{-1}a^{\circ}e$
$e \leftarrow e - az$
For each pixel $s \in S$ {
$\tilde{b}_{s,r} \leftarrow \frac{\partial_{s,r}\rho(x_s - x_r)}{2(x_s - x_r)}$
$\theta_1 \leftarrow -e^t \Lambda A_{*,s} + \sum_{r \in \partial_r} 2\tilde{b}_{s,r} \left(x_s - x_r \right)$
$\theta_2 \leftarrow A_{*,s}^t \Lambda A_{*,s} + \sum_{r \in \partial s}^{r \in \partial s} 2\tilde{b}_{s,r}$
$\alpha^* \leftarrow \operatorname{clip}\left\{\frac{-\theta_1}{\theta_2}, [-x_s, \infty)\right\}$
$x_s \leftarrow x_s + \alpha^*$
$e \leftarrow e - A_{*,s} \alpha^*$
} }

- K-Wave simulation
 - 4 simulations
 - 2 simulations of simple phantoms
 - 2 simulations of corner cases
 - 10-transducer in-line system
 - Input signal: 3-cycle sine wave,52 kHz central frequency
 - Medium size: 40 cm wide, 30 cm thick.

Ground truth

SAFT

MBIR

Empirical Data Reconstruction

First Experiment:

- Cement sample with a rebar inside
 - 10-transducer in-line system
 - Input signal: 52 kHz central frequency
 - Medium size: 40 cm wide, 30 cm thick.

Empirical Data Reconstruction (cont.)

Ground truth

SAFT

MBIR

Hani Almansouri - halmanso@purdue.edu

Empirical Data Reconstruction Second Experiment:

- Three cement samples
 - Control with no features
 - Flat steel plate
 - Steel plate with ORNL text engraved and steel ball
- Field of view: 40 cm wide, 30 cm deep.
- Acquired initial data set
- The reconstruction of these samples are in progress ...

Closing Remarks

Achievements:

- Functional MBIR algorithm for ultrasonic synthetic and empirical data.
- Upgraded forward model, able to compensate for direct arrival signal.
- Better suppression of noise and artifacts compared with SAFT.

Challenges:

- Dependencies caused by frontal pixels
- Multiple reflection effects

Future work:

- More empirical experiments
- Non-homogeneous anisotropic non-linear forward model

MBIR

